Recitation 9

October 22, 2015

Review

Eigenvalues and eigenvectors: the following are equivalent

- λ is an eigenvector of a matrix A;
- $Av = \lambda v$ for some **non-zero** vector v;
- $(A \lambda I)v = 0$ for some **non-zero** vector v;
- $(A \lambda I)$ has non-zero null space;
- $(A \lambda I)$ is not invertible;
- λ is a solution of the characteristic equation $\det(A \lambda I) = 0$.

Algorithm for diagonalizing a matrix: suppose you need to diagonalize a matrix A (assume it can be diagonalized)

- 1. Find eigenvalues. To do that, solve the characteristic equation $det(A \lambda I) = 0$.
- 2. Put eigenvalues into a matrix. Namely, you write a diagonal matrix D with eigenvalues along the diagonal.
- 3. Find eigenvectors. For each λ that you have found, find a basis of eigenvectors, i.e. find a basis for $Nul(A \lambda I)$. In other words, solve the homogeneous system $(A \lambda I)v = 0$ and pick a basis for the space of solutions.
- 4. Put the eigenvectors you have found in to a matrix. Denote this matrix by P. Note: the order of the vectors matters. Eigenvalues λ and corresponding vectors in P should be in the same order. If you have several independent eigenvectors for the same eigenvalue, then the order among them doesn't matter. Find the matrix P^{-1} . Then $A = PDP^{-1}$. Be happy.

Algorithm for finding a matrix of linear transformation in two bases. Namely, suppose you have a transformation $T: V \to W$ from *n*-dimensional space to *m*-dimensional one. Let $\mathcal{B} = \{v_1, \ldots, v_n\}$ be a basis in V and $\mathcal{C} = \{w_1, \ldots, w_m\}$ be a basis in W. You need to find the matrix $M = [T]_{\mathcal{B},\mathcal{C}}$.

- 1. Find $T(v_1), \ldots, T(v_n)$.
- 2. Find the coordinates $[T(v_1)]_{\mathcal{C}}, \ldots, [T(v_n)]_{\mathcal{C}}$ of $T(v_1), \ldots, T(v_n)$ in the basis \mathcal{C} .
- 3. Put that into matrix: $M = [[T(v_1)]_{\mathcal{C}}, \dots, [T(v_n)]_{\mathcal{C}}].$

Algorithm to find matrix of $A: \mathbb{R}^n \to \mathbb{R}^m$ in some bases. The same thing as above really. If $\mathcal{B} = \{v_1, \ldots, v_n\}$ is a basis of \mathbb{R}^n , put these vectors into a matrix $P = [v_1 \ldots v_n]$. If $\mathcal{C} = \{w_1, \ldots, w_m\}$ is a basis of \mathbb{R}^m , put these vectors into a matrix $Q = [w_1 \ldots w_m]$. Then the matrix of A in non-standard bases \mathcal{B}, \mathcal{C} is $M = Q^{-1}AP$.

If n = m and $\mathcal{B} = \mathcal{C}$: the same stuff really. It's just now P = Q, so $M = P^{-1}AP$. Notice: diagonalization is a particular case of that. If $P = [v_1 \dots v_n]$ is a basis of eigenvectors of A, then $D = P^{-1}AP$ is the diagonalization of A corresponding to $\{v_1, \dots, v_n\}$.

Problems

Problem 1. Find determinant of the matrix $A = \begin{bmatrix} 2 & -3 & 1 \\ -3 & 4 & 1 \\ 4 & -5 & 2 \end{bmatrix}$

Problem 2. Diagonalize the matrix $A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$.

Problem 3. Diagonalize the matrix $A = \begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{bmatrix}$ knowing that the eigenvalues are $\lambda_1 = 1, \lambda_2 = 5$.

Problem 4. Can the matrix $B = \begin{bmatrix} 1 & 3 \\ -3 & 7 \end{bmatrix}$ be diagonalized?

Problem 5. Let $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Prove that these vectors form a basis of \mathbb{R}^2 .

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation $v \mapsto Av$ where $A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$. Find the matrix of T relative to the basis $\{v_1, v_2\}$.

Problem 6. Let $T: \mathbb{P}_2 \to \mathbb{P}_3$ be the transformation sending a polynomial p(t) to the polynomial $t \cdot p(t)'$.

- 1. Find the image of $p(t) = -t^2 + 2t + 1$.
- 2. Prove that this is a linear transformation.
- 3. Find the matrix of T relative to the bases $\{1, t, t^2\}$ and $\{1, t, t^2, t^3\}$.
- 4. What is the null space of T? What is the rank of T?

Problem 7. Let a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a transformation given in the standard bases by the matrix $A = \begin{bmatrix} 3 & 2 \\ 0 & -1 \\ 1 & 2 \end{bmatrix}$. Fix a non-standard basis in \mathbb{R}^2 given by $v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and a non-standard basis in \mathbb{R}^3 given by $u_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, $u_2 = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$ and $u_3 = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$. Find the matrix of the transformation T relative to the bases $\{v_1, v_2\}$ and $\{u_1, u_2, u_3\}$.

Problem 8. Show that if an $n \times n$ matrix A has n linearly independent eigenvectors, then so does A^T . (Hint: use the Diagonalization theorem.)

Problem 9. Prove that if matrices A and B are similar, then they have equal characteristic polynomials. Will similar matrices have the same eigenvectors? What can you say about their eigenvectors?